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Abstract. A new type of branched chain processes is introduced, based on the assumption 
that at the critical state, memory effects are present and thus the probability Ag that at the 
qth generation a new particle is created depends on the generation index q. This 
dependence may be described in terms of a kind of hierarchical clustering. The main 
results are the following: (a) for the supracritical regime the probability e(N) that the 
offspring of an initial particle is N has an inverse power law behaviour &N)- 
N-''+aoZ(ln N) as N-tm where X>O is a fractal exponent related to the mean number it 
of particles produced per generation and E(ln N) is a periodic function of In N; (b) for the 
subcritical regime &N) has an exponential tail &N)-exp(-Nln(1lit)); (c) for the 
critical regime the asymptotic behaviour is described by a stretched exponential &N)- 
constantN-'exp(- KN"'Z-H)) where l>HsOh another fraaalexponentdescribingthe 
memory effects. 

1. Introduction 

Memory effects have been extensively investigated in physical and mathematical 
literature. Various examples from polymer physics, normal and exotic diffusion, 
dynamics of growth processes, diffusion limited aggregation, kinetic critical pheno- 
mena, etc., have been analysed (Bouchaud and Georges 1990, Freed 1987, Haus and 
Kehr 1978, 1979, Kutner 1985, Iosifescu and Grigorescu 1989, Peliti and Pietronero 
1987, Pietronero and Sibesma 1987, Shlesinger and Klafter 1989). Our knowledge of 
memory effects comes mainly from numerical simulations, however, several analyti- 
cally tractable models have also been investigated. 

Within this paper we aim at giving a new theoretical description of the memory 
effect for critical branched chain processes. A branched chain process is a simple 
dynamical phenomenon which is analytically tractable. Although the modelling of a 
chain process is relatively simple, as far as we know no attempts to analyse the 
memory effects have been made. 

The starting point of our approach is a renormalized theory of supracritical 
branched chain processes suggested by Vlad (1991). We shall try to incorporate the 
memory effects into the model by means of a hierarchical clustering approach similar 
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to that considered in the context of random processes with almost complete connec- 
tions (Vlad 1992a). 

2. Formulation of the model 

Following Wad (1991) we shaU consider a branched process such as the growth of a 
population or a chemical or nuclear chain reaction 

. +x-tvx+.  . . , v = 0 , 1 , 2 , .  . . . (1) 

Although the processes (1) are not necessarily related to chemistry, for the sake of 
simplicity we shall use the chemical terminology. Thus, we shall refer to the individual 
X as an ‘active intermediate’ and to reactions (1) with v = O ,  v =  1, v > 1  as the 
termination, propagation and branching processes, respectively. 

To each generation q of intermediates we shall attach a probability ,Iq that an 
individual is generated and a probability p, that the branching process does not 
terminate at the qth generation. In terms of these probabilities we can evaluate the 
following probability distributions: 

(a) the prohabilityp,(v) that at qth generation the offspring of an individual from 
the (q - 1)th generation is v :  

(b) the probability q, that the process stops after q generations: 

Our aim is that, starting from A, andp,, to compute the probability &(n) that at 
the qth generation the number of offspring of an individual from the 0th generation is 
n and the probability 

that the offspring from all generations is n. We note that the probability ((n) was 
introduced by Wad (1991) and that in a certain sense it expresses a kind or 
renormalization-like transformation. 

At least in principle, &(n) and [(n) can be evaluated by applying the theory of 
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stochastic branching processes (Athreya and Ney 1972, Harris 1989). According to 
this theory, the generating function 

of E,(n) is the qth functional iterate of the generating function 

f&) = 2 Z Y P q ( Y ) .  (6) 

We have 

G,(z) =f'""(r) 

with 

f'"4'(z) = f ( p - I ) )  (2 ) )  f'*O'(z)=z. 

In the case 

,Iq = 1 =independent of q 

pq  = p  = independent of q 

( 9 4  

(9b) 
the evaluation of c(n) was reduced by Wad (1991) to a problem considered in the 
literature. We note that in this case p,(v) =L"(l -1) is given by the same Pascal law 
for all generations. This law corresponds to the problem of stimulated absorbtion of 
photons in an infinite medium (van Vliet arid Zijlstra 1977; a similar law had been 
used in demography long time before, Lotka 1939). 

Here our purpose is different. As we are mainly interested in the analysis of the 
memory effects at the critical state, we have to remove the restriction (9a). Indeed, at 
the critical state a kind of self-similarity on the whole is valid and the probability of the 
chain process termination 1 -pq  may be assumed to be the same for all generations; 
however the memory yields to a dependence of the particle generation rate on the 
generation index q and thus ,Iq should be q-dependent. By solving the problem of 
functional iteration for distinct 1, we obtain (see appendix 1) 

In order to evaluate the behaviour of { (n)  more information about the dependence of . 1, on q is necessary. 
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3. Non-critical regimes 

Far from the critical state the memory effects are missing and we can assume that 
A,=A=independent of 4. We get 

where 
DD 

ti= vpq ( v )  = A / ( l - 1 )  
"-0 

is the average offspring of an individual per generation. Depending on the value of li 
we shall distinguish the following cases. 

(a) The supracritical regime 

P> 1. (15) 

The growth of the population is explosive. Although at each step a finite probability of 
extinction 5q(0)=(1-P9)/(l-tiqi1)existSasq+m allmomentsofn tendto infirity. 
Even if ti is not very large, for sufficiently large q we have 

liq>> 1 

and tq(n)  and &n) may be expressed as 

Equation (176) has a self-similar form. By evaluating its asymptotic behaviour by 
means of the Poisson summation formula we come to (see appendix 2): 

&n)-n-"+%(ln n )  as n-m (18) 

%e= In(l/p)/ln ,i (19) 

where the fractal exponent %e depends on 9 and p: 

=(Inn) is a periodic function of Inn with period In li: 

+F-(l+%e,2nm/(lnti))sin[2?Em(lnn)/(Inti)] I1 (20) 

where r(x) is Euler's gamma function 

r(x) = y X - l  exp ( - y )  dy. I, 
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and F*(u, b) are the real and imaginary parts of the gamma function of complex 
argument. respectively 

Scaling equations similar to (18) have been derived by different authors in different 
physical contexts (Novikov 1966, Shlesinger and West 1991 and West 1990 and 
references therein). 

(b) The sub-crificd regime 

C < l .  (23) 
In this case the population decreases from generation to generation and eventually 
becomes extinct. We have the following expressions for the asymptotic behaviour: 

= v’-’( 1 - c)* exp [ - n In( I/$)] n+ m q+m (244 

t(n)=C-’(I -p)(1 -p*)-’(1- 8)’exp [ - n  In ( l /~ ) ]  asn+m. (246) 

4. The long memory effects 

First of all we shall investigate the critical regime by neglecting the memory effects, 
thatis by assuming thatL,=d=independent ofqandV=L/(I-L)=l andthusd=f.  
We have 

5&)=(1 -&JU +q)F2M1 +q)Y-‘+&&z/(l +all. (25) 
We note some similarities with the supracritical regime. As q + the moments of n 
also increase towards infinity; however, the increase is slower than in the supracritical 
case. The asymptotic behaviour of &(n) is expressed by a relationship similar to (17u) 

&(n) ~ ( 1  +q)-2exp [ -n/(l +q)]  q - t m  n + m .  (26) 
The main difference is related to the behaviour of ((n): 

DD 

~ ( n ) - ( l - p ) C p q ( l + q ) - Z e x ~ [ - n / ( l  +q)I as n+m. (27) 

Here a difficulty arises in the evaluation of &n) as n+ m . Unfortunately the Poisson 
formula cannot be applied to (27); however, noticing that the magnitude of a term in 
the series (27) is the result of multiplication of an exponentially decreasing function of 
q kq) and of an increasing function of q (exp [ - n / ( l  + q)]) we can evaluate the value 
of t (n )  by means of the method of steepest descent. After some routine manipulations 
we get 

q=0 

&)-constantn-’exp (-K(O)n’”) (2W 

K ( 0 )  =2(lu (l/p))l’2. (2%) 

where 

The method of steepest descent cannot be used to evaluate the value of the pre- 
exponential constant. 
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In order to incorporate memory into the model we observe that starting from the 
sub-critical regime the critical state can be reached by considering that 

v=A/( l  - A ) ) <  1 v - 1  (294 

AS112 A-1/2. (296) 

i.e. 

Let us assume that the limit (29a-b) occurs from generation to generation, that is, we 
start from a value &<f and through a sequence &,A,,  A2, . . . we eventually reach the 
critical value L4 -9 as q + m. This limit procedure can be expressed in terms of a 
‘relative probability’ 

E4 =A,/(l-A,) s 1 for Aqs l /2 .  (30) 
For A,St, c4 can be interpreted as the probability that a particle from the (q- 1)th 
generation is replaced by another particle from the qth generation, provided that a 
termination process (equation (1) for v = O )  does not take place. An alternative 
interpretation is related to the memory loss. Making an analogy with the work of Wad 
(19921) we shall assume that the memory lossoccurs in a hierarchical manner, i.e. that 
the individual events of memory loss are lumped into blocks, the blocks into blocks of 
blocks, etc. The number I of successive lumping events generating a certain block is 
iteself random. Denoting by c the probability that the memory is lost after a lumping 
step e4 can be evaluated as an average over all possible values of the lumping events 

where ;lr(q) is the probability of occurrence of I lumping events. Denoting by b the 
probability that a lumping event corresponds to an elementary process from a given 
block, we have 

;lr(q) = (1 - b q ) ( b y ‘ .  (32) 
By evaluating the sum (31) we get 

E,(c, b ) = ~ ( l - b ‘ ) / ( l - ~ b ~ ) .  (33) 
As finally the whole memory is lost we consider the limit c, b-1. Following Wad 
(1992a), we shall assume that the ratio 

H=Inc/lnb=constant<I. (34) 

% = d ( q + H )  i.e. L4=q/(2q+H) (35) 

H i s  a kind of ‘fractal exponent’ attached to the lumping process. We get 

and therefore 
g4=q!T(1 + H)/T(H + q + 1) 

and 
4 

q4=c q’!T(l+H)/T(H+q’+ 1). (37) 
# = I  

By taking equations (4), (10) and (37) into account and applying the method of 
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steepest descent we get the following expressions for the asymptotic behaviour of 
E&) and i%): 

and 
&n)-constant n-'exp [ - K(H)~"( ' -~) ]  as rz+m (39) 

where 

K ( H ) =  (I - ~ ) " ( ' - ~ ) ( 2 - ~ ) [ l n  ( ~ / ~ ) J ( ~ - ~ ) ~ ( * - ~ ) i [ r ( i  + H ) " ( * - ~ ) ] .  (40) 
The complete memory loss corresponds to H=O. In this case (39)-(40) reduce to 

(28)-(29). In contrast, for H+ 1 the memory effects are very strong and even at the 
critical state for n - m ,  [ ( n )  tends towards an exponential. 

5. Moments 

A referee raised the problem of physical significance of the critical regime. In order to 
answer this question we shall evaluate the factorial moments 

of the number of particles from the qth generation and of the total offspring number, 
respectively. If the memory effects are missing these factorial moments can be easily 
evaluated by applying the generating function technique, resulting in: 

(a) The sub-critical regime 

YC1. (44) ( -  1 -P 1-1 1 - 1  

&=l[(l-l)!]* ( 1 : G )  - x k ! ( l - l - k ) !  1-pGk+' 
k=O 

(b) The critical regime 

&(q)=/!q'-' Y= 1, 

where 
m kl-1 

k!(m - k)!  %I!] = (- 1 y - x  
k=I 

are the Stirling numbers of the second kind 
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(c) The supracritical regime 
p ( p q - 1 )  I-I 

V > 1  [ e-1 ] Af(q)=l!V 

&= m for V >  (l/p)"'. (50) 
By examining (41)-(50) we see that the critical regime (i= 1) does not correspond to 
a gelation-like point. Such a point is characterized by a minimum value of S for which 
all moments A, of tbe total number of particles are infinite. From (49)-(50) we note 
that the gelation-like point corresponds to 

S = l / p  (51) 
that is, to a particular case of the supracritical regime. From this point of view it is 
useful to make a distinction between two supracritical sub-regimes: 

(1) The pregelarion regime, characterized by 
up > P> 1. 

In this case the exponent %e entering the asymptotical expression of E(n) (equation 
(18)) is bigger than unity 

%e=ln(l/p)llnV>l (53) 

Af = finite I<%, (54) 
&=m l > X .  (55) 

S>llp. (56) 

l > % e > O  (56) 

A(=.. 1=1,2,. . . . (58) 

and only the moments having an index 1 equal or greater than %e are infinite: 

(2 )  The gelation and postgelation regime, characterized by 

We have 

and all moments are infinite 

To clarify the nature of the critical point we shall evaluate from (43)-(50) the 
means and the dispersions of the numbers of particles corresponding to the different 
cases mentioned before. We get: 

(a) The sub-critical regime 

(n(q))=+=exp[ -qin(l/c)] q-+m (59) 

(An*(q)) = - S9( 1 - S q )  - exp [ - q In (US)] q+m (60) 

(fi)=(l-p)/(l-pV) (61) 

2c 29 

1 - V  1-V 
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We note that both (n(q)) and (An2(q)) tend to 0 as q+ m in the same way, resulting in 
the scaling equation 

(b) The critical regime 

The equivalence between the behaviour of (n(q)) and (An2(& as q -P no longer 
exists. Whereas the mean value (n(q)) is constant the dispersion (An2(q)) tends to m 
as 4 3 m . This fact shows that as 4 + m the number of particles from a generation has 
an intermittent behaviour. 

(c) The supracritical regime 

(n(q)) = V q  = exp (4 In (ti)) 4 - m  (68) 
2ti 2ti 

{Ad(q))=:Gq(tiq- v -  1 1 ) - 7  v - 1  exp [Zq In e] q - t m  (69) 

p ( 1 - p )  2Y* t i -1  
= z ( i q p - i q )  (l/p)% ti> 1 (72) 

( A E * ) = m  ti> (l/P)l/*. (73) 
As q-m both (n (q ) )  and (An2(q))  increase exponentially to m . The asymptotic rate 
of increase of (An'(q)) is 2 In ti, that is, two times bigger than the rate of increase In ti 
of (n(q)).  We have 

28 
(An2(q)) (n(qP2 q + m .  (75) 

From these equations we note that the intermittent behaviour is stronger than in the 
case of the critical regime. 

From the above analysis it follows that V =  1 is the minimum value of ti for which 
the intermittent behaviour of n(q) occurs. Thus the criticat regime corresponds to the 
onset of intermittent behaviour for the number of particles from a generation. 

The analysis of the memory effects is more difficult. The evaluation of some 
moments invoves the summation of certain series which cannot be computed exactly 
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in the general case. However, the analysis of their asymptotic behaviour is still 
possible by means of analytical methods. We get the following expressions for the 
factorial moments: 

from which we can evaluate the asymptotic behaviour for (n(q)) and (An2(q)): 

(79) 

q'!r(i + H )  

-{[zrZ(i + H)11(1- H)}q'-m 

(An'(q))/(n(q))1{[2r(l +H)]1(1 - H ) } q I W H  as q j m  (80) 
( ~ n z ( q ) ) -  {z~r(i + H)JI'HI(I - H)}(n(q))(m-l)l" as q + m ,  (81) 

For q+m the mean value (n(q)) decreases to 0 as q-". The evolution of (Anz(q)) 
depends on the value of the exponent H. For H <  d. it increases to m , for H = 4 it tends 
towards a constant value and for H > f  i t  decreases to 0. Although less pronounced 
than in the case when memory is missing (H=O) the intermittent behaviour of n(q) 
still exists. Indeed, the ratio (An '(q))/(n(q)) increases to m as ql-" for 4-m €or any 
1 > H3O. For H>O the increase is slower than the q-dependence given by (64)-(65) 
for the case when the memory is missing. 

The mean value (A) of the total offspring number can be expressed in a closed form 

q!r(l + *) 1 + I -  (An2(q))  = r(q + H +  1) r(q'+H+i) q q + H + i )  
q ' i l  

as q-+m 

q!r(l + H ,  [2 f: 
and thus 

(A)=[ ( l  -p)/p]%(l +H, 1 -H,p)+ 1 - p  (82) 

B ( ~ , g , x ) = I X * P - ' ( l - x ) q - ' d r  0 (83) 

where 

is the incomplete beta function. The asymptotic behaviour of (A) for1 +O andp + 1 is 
given by 

H 
H +  1 (A)El --p+ O(p2) as p+O 

and 

ZH 
sin ( z H )  

(i)=(l-p)" . asp-1. 

On physical grounds we expect that all moments of the total offspring number exist 
and arc finite for any value of the memory exponent l>H>O. Indeed the memory 
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effects lead to a slower increase for the first generations whereas for the last 
generations the rate is the same as in the case when the memory effects are missing. 
To prove this we shall evaluate the parameter V for l>HaO. From (2) and (35) we 
have 

DD 

i.e. for q < m ,  ri,(H) is smaller than the value i= 1 corresponding to H=O, whereas 
for q - m  it tends to the asymptotic value ti= 1. Thus the increase of the number of 
particles for H>O should be smaller than the one corresponding to H = 0. As the 
moments dbrresponding to the critical regime without memory (H=O) exist and are 
finite (see equation (46)), the moments corresponding to H>O should be also finite. 
By examining (77) it is easy to see that forb <: 1 this is indeed the case. All terms in the 
series (77) are positive and tend to 0 as 

The exponential decrease to 0 given by (87) ensures the convergence of the series 
(77). 

6. Discussion 

Within this paper we have generalized a model developed hy Mad (1991) for 
supracritical branched chain processes by incorporating the memory effects typical of 
the critical state. The memory is assumed to be described in terms of a hierarchical 
lumping process characterized by a certain fractal exponent. 

The asymptotic behaviour for the probability distribution c (n)  of the total 
offspring of an initial particle depends on the probabilities A, that a new particle is 
generated at the qth generation. The subcritical regime corresponds to +>&=A= 
independent of q. In this case c ( n )  has an exponential tail. As Aq increase the memory 
effects become important and ,I9 are q-dependent with A9++ as q+m . This is the 
critical regime. The corresponding tail of t ( n )  is a streched exponential 
constant n-lexp [ - K ( H ) n " ]  with an exponent a= U(2-H) between f (H=O, no 
memory) and a -+ 1 ( H - t  1, very strong memory). A supercritical regime is reached 
when A,, become bigger than + and again independent of q. For this regime E(n) is 
characterized by an inverse power tail in n modulated by a periodic function in Inn. 

In the subcritical regime all moments of the number of particles exist and are 
finite. In particular. as the number q of generations tends to infinity, q + m , both the 
mean value and the dispersion of the number of particles from a generation decay to 0 
with the same rate. Although in the critical regime the moments are still finite, an 
intermittent behaviour of the numbers of particles from a generation emerges whether 
the memory is present or not. The memory generates a slowing down of the growth 
process resulting in an unexpected behaviour of the average value and dispersion: the 
average number of particles from a generation slowly decreases with increase of the 
generation index; depending on the value of the memory exponent H ,  the correspond- 
ing dispersion either increases or decreases. In the first part of the supracritical 
regime, corresponding to l / p > i >  1, the intermittent behaviour is very strong. In 
particular the dispersion of the number of particles from a given generation exponen- 
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tially increases with a rate which is two times bigger than the rate of increase of the 
average value. For l/p > P >  1 the superior moments of the total offspring number are 
infinite. As the system is approaching the ‘gelation point’ i.+ Up  the first moments 
also become infinite. Eventually for $3 l / p  all moments are infinite and there is no 
characteristic scale for the total offspring number. 

The model presented in this paper may be applied to a broad class of natural 
phenomena. For instance, the process (1) may represent the growth of a branched 
polymer, a chemical explosion in gases, fragmentation dynamics or the growth of a 
population. However, not all these processes display all regimes discussed before. A 
necessary condition for the existence of all the three regimes is the interplay between 
the generation and decay processes of the X particles: the decay processes lead to the 
possibility that the final offspring number of an inital particle is equal to 0; on the 
contrary the branched generation processes lead to the possibility of an explosive 
increase of the number of particles. The equilibration between these two opposite 
factors leads to the three regimes discussed before. For example a chemical chain 
reaction in gases, the growth of a branched polymer or of a population belong to this 
class of processes. 

A fragmentation process with mass conservation has a different behaviour. Due to 
mass conservation it is impossible that the h a 1  offspring number is 0. The system 
should contain at least one particle which is made up of the total amount of matter 
initially present in the system. The theory may be also applied to this kind of process; 
in this case one or two of the characteristic regimes described before are missing. 

After submitting this paper for publication we learnt about two recent articles by 
Berlin et a1 (1992a, b) which also deal with memory effects for branched chain 
processes. Their approach is related to the growth of biological populations rather 
than to the physico-chemical processes considered here. Memory effects are intro- 
duced by assuming that the fertility of an individual is an inherited feature. They 
discuss the time dependence of the moments of population size rather than the 
probability distribution of the final offspring number originating from an individual. 
That is why a comparison between the two approaches is not easy. At present it is not 
clear whether the approach of Berlin et al(1992a, b) is also of interest in connection 
with certain physico-chemical processes or not. 

Let us outline some open questions and limitations of our approach. A first 
objection is related to the fact that no specific predictions concerning the values of the 
probabilities c and b or of the fractal exponent Hare  made. Another limitation of the 
theory is related to the impossibility of analytical evaluation of the pre-exponential 
coefficients in (23) and (39). It might also be possible that these coefficients are in fact 
slowly varying functions of It. The testing of this assumption is impossible within the 
framework of the steepest descent approximation. 

On the other hand, describing the memory in terms of a hierarchical lumping 
process is rather obscure. Broadly speaking the absence of the memory corresponds to 
a set of q-independent probabilities&=&= . . . =A= independent of q. An appropri- 
ate model should be built up by explaining how starting from a memoryless system the 
memory effects are generated. In contrast, we have derived our model in a rather 
arbitrary way by analysing how the memory could be lost. Because of this drawback 
our picture is rather incomplete. In particular no clear physical explanation for the 
mechanism of memory action is suggested. It might be possible that a more detailed 
model of memory action could be derived by combining the above-presented 
approach with a new hierarchical clustering approach to stochastic renormalisation 
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(Vlad 1992b). This is a separate project which is planned to be the subject of future 
research. 
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Appendix 1 

The generating function f,(z) corresponding to (2) is 

f&) = (1 -J.m - 4) (Al.1) 
so that the solving of the functional iteration (8) reduces to the solving of a nonlinear 
difference equation with variable coeefficients 

f l # : 4 ) - J p ) f ( % ( . ? - 1 ) ) =  1 -j, ,r (A1.2) 

f'"" = A,/A,,,, (A1.3) 
Through the substitution 

(A1.2) reduces to a second-order linear difference equation 
(1 -A4)AqtI -A,+IZ,A,-,=O. 

By solving (A1.4) with the initial conditions 

(A1.4) 

A,=z A l = l  (A1.5) 
which corrrespond to f'*')(z) = z ,  coming back to f(")(z) and using (7) we get an 
analytical expression for G,(z) 

(A1.6) 
By developing (A1.6) in a Taylor series in z and comparing the result with (5) we 
come to (10). 

Gq(z) =[I+ r1,-1(1- z)M1+ r Iq (1 -  z)l. 

Appendix 2 

The sum (17b) may be evaluated by means of the Poisson summation formula (west 
1990): 

W D I  

h ( q ) = ( l / Z ) h ( o ) f / ~ h ( x ) d r + Z C  / h(x)cos(-)dx (A2.1) 
q=0 m=1 0 

where 
h(x)=(pl t j )"exp(-nt j -X) .  (A2.2) 

By combining (17b) and (A2.1)-(A2.2) and making the change of variable 

y=nV-" 642.3) 
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we can express E(n) as a sum of integrals over y from 0 to n.  These integrals have the 
structure of incomplete gamma functions of different complex arguments. As n - t m  
they converge towards the corresponding complete gamma functions. By replacing 
the integration limit n by m after some arrangements we obtain (18)-(20). 
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